

Statement of Verification

BREG EN EPD No.: 000407 Issue 02

This is to verify that the

Environmental Product Declaration provided by:

CCL International

is in accordance with the requirements of:

EN 15804:2012+A1:2013

BRE Global Scheme Document SD207

This declaration is for:

1kg of XM/XF Multistrand Post Tensioning Anchor Systems

Company Address

Unit 8, Millennium Drive, Leeds, LS11 5BP

23 December 2021

Emma Baker

Operator

06 January 2022

Date of this Issue

22 December 2026

BRE/Global

EPD

Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms.

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

BRE Global Ltd., Garston, Watford WD25 9XX

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

© BRE Global Ltd, 2017 BF1805-C Rev 0.1 Page 1 of 9

Environmental Product Declaration

EPD Number: 000407

General Information

EPD Programme Operator	Applicable Product Category Rules							
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013							
Commissioner of LCA study	LCA consultant/Tool							
CCL International Unit 8, Millennium Drive, Leeds, LS11 5BP	Pat Hermon BRE LINA v2							
Declared Unit	Applicability/Coverage							
1kg of XM/XF post tensioning anchor	Product Average.							
EPD Type	Background database							
Cradle to Gate	ecoinvent v3.2							
Demonstra	ation of Verification							
CEN standard EN 18	5804 serves as the core PCR ^a							
Independent verification of the declaration and data according to EN ISO 14025:2010 ☐ Internal ✓ External								
(Where appropriate ^b)Third party verifier: Nigel Jones								
a: Product category rules b: Optional for business-to-business communication; mandatory	for business-to-consumer communication (see EN ISO 14025:2010, 9.4)							

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A1:2013. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A1:2013 for further guidance

Information modules covered

	Product		Const	ruction		Use stage				End-of-life		Benefits and loads beyond				
1 Toduct		~	Construction		Rel	ated to the building fabric Related to the building			Related to			the system boundary				
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
$\overline{\mathbf{Q}}$	V	$\overline{\mathbf{A}}$														

Note: Ticks indicate the Information Modules declared.

Manufacturing site

Construction Product

Product Description

The XM and XF are ETA-approved multistrand post-tensioning anchor systems most commonly used in cast-in-place and precast post-tensioned concrete applications. They are used in buildings, bridges, containment and civil structures, as well as repair and strengthening. The ETA approvals are ETA-07/0035 for XM system and ETA-10/0107 for XF system.

The systems can accommodate 13 mm and 15 mm nominal diameter strands. The XM and XF anchor systems cover the whole anchor assembly as described in the ETAs with each assembly comprising the force transfer unit (FTU), the anchor head anchorage (AH), the steel wedges and the plastic cone. The XM system includes sizes XM10 to XM100, and the XF system includes sizes XF10 to XF30.

XM XF

Anchors are available in range of different sizes:

Anchor Assembly and Description	No. of strands	Anchor Assembly Weight (Kg)	_
XF range	2T15 - 5T15	3.7-9.1	
(XF10 to XF30)	3T13-6T13		
XM range	3T15 - 37T15	7-128	
(XM10 to XM-110)	4T13 - 55T13		

This is an average EPD covering both anchor sizes produced over the course of 1 year.

Technical Information

ΧM

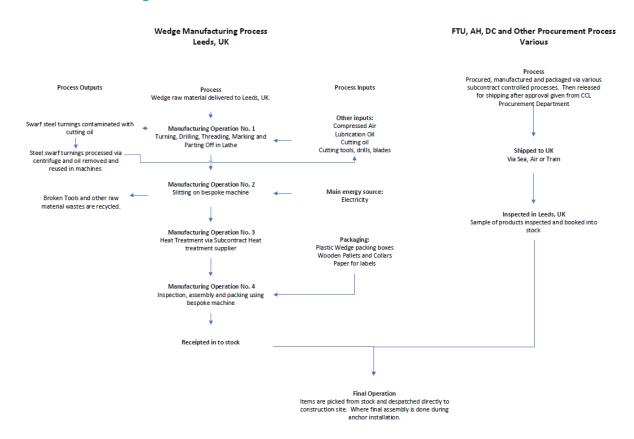
Essential characteristics	Performance	Standard
Anchorage components	Section 1.2.2 and annex 02-33	
Strand characteristics	Section 1.2.3.3, table 05 and annex 01	
Prestressing forces	Section 1.2.3.4 and table 06-	ETA-07/0035
Friction losses and anchorage wedge set	Section 1.2.5 and 1.2.6	
Mechanical resistance and stability	Section 3	

XF

Essential characteristics	Performance	Standard
Anchorage components	Section 1.2.2 and annex 02-21	
Strand characteristics	Section 1.2.3.3, table 05 and annex 01	
Prestressing forces	Section 1.2.3.4 and table 06-	ETA-10/0107
Friction losses and anchorage wedge set	Section 1.2.5 and 1.2.6	
Mechanical resistance and stability	Section 3	

Main Product Contents

Material/Chemical Input	%
Steel	98%
Plastic	2%


Material composition of all products assessed within this average EPD

Manufacturing Process

Raw wedge material is delivered to the factory in Leeds where it undergoes turning, drilling, threading, marking and parting off in a lathe. Steel Swarf waste is processed and input back into the system. The wedges are then slitted, heat treated and then inspected before packaging and receipted into stock ready for dispatch.

Process flow diagram

Life Cycle Assessment Calculation Rules

Declared unit description

1 kg of anchor as used in post-tensioned cast-in-place and precast concrete applications.

System boundary

This is a cradle to gate EPD, reporting all production life cycle stages of modules from A1 to A3 inclusive in accordance with EN 15804:2012+A1:2013.

Data sources, quality and allocation

Data collected by CCL for the production of the XF and XM Anchors for the period 1st January 2020 to 31st December 2020 has been used for this EPD.

Electricity consumption was determined by measuring the consumption on the manufacturing site for all production lines and weighted proportionally by production of the anchors. The consumption of water is calculated based on the factual consumption.

Figures for the raw materials, ancillary materials and packaging were from actual usages. Allocation of energy, water, and waste has been done according to the provisions of the BRE PCR PN514 and EN 15804.

Secondary data has been drawn from the BRE LINA database v2.0.86. The background LCI datasets are based on ecoinvent v3.2 (2015) which was used for all other material energy and waste data requirements.

Cut-off criteria

All inputs or outputs have been included and all raw materials, packaging and transport, energy, water use and wastes, are included, except for direct emissions to air, water and soil, which are not measured. Upstream extraction and/or processing of inputs are included within the use of the background datasets within LINA.

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts											
		GWP	ODP	AP	EP	POCP	ADPE	ADPF			
			kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO₂ equiv.	kg (PO ₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.		
	Raw material supply	A1	1.85	1.02E-07	0.00786	0.00307	0.00243	2.39E-06	24.8		
Droduot otogo	Transport	A2	0.307	5.15E-08	0.00518	0.000616	0.000384	2.70E-07	4.44		
Product stage	Manufacturing	А3	0.0248	8.47E-09	0.000605	0.000384	0.000057	1.73E-07	1.85		
	Total (of product stage)	A1-3	2.18	1.62E-07	0.0136	0.00407	0.00287	2.83E-06	31.1		

GWP = Global Warming Potential;

ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements;

ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters describing resource use, primary energy											
			PERE	PERM	PERT	PENRE	PENRM	PENRT			
			MJ	MJ	MJ	MJ	MJ	MJ			
	Raw material supply	A1	0.985	5.00E-06	0.985	26.9	0	26.9			
Product stage	Transport	A2	0.097	1.40E-07	0.098	4.51	0	4.51			
Product stage	Manufacturing	А3	1.23	3.12E-07	1.23	2.35	0	2.35			
	Total (of product stage)	A1-3	2.31	5.45E-06	2.31	33.8	0	33.8			

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Parameters describing resource use, secondary materials and fuels, use of water										
			SM	RSF	NRSF	FW				
			kg	MJ net calorific value	MJ net calorific value	m³				
	Raw material supply	A1	0	0	0	0.0336				
Draduat ataga	Transport	A2	0	0	0	0.00105				
Product stage	Manufacturing	А3	0	0	0	0.000773				
	Total (of product stage)	A1-3	0	0	0	0.035				

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

LCA Results (continued)

Other environmental information describing waste categories										
			HWD	RWD						
			kg	kg	kg					
	Raw material supply	A1	0.148	0.095	0.0000501					
Draduot etago	Transport	A2	0.00188	0.054	0.0000303					
Product stage	Manufacturing	А3	0.000612	0.0055	0.0000118					
	Total (of product stage)	A1-3	0.150	0.156	0.0000922					

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

Other environmental information describing output flows – at end of life										
			CRU	MFR	MER	EE				
			kg	kg	kg	MJ per energy carrier				
	Raw material supply	A1	0	0	0	0				
Droduct store	Transport	A2	0	0	0	0				
Product stage	Manufacturing	А3	0	0.059	0	0				
	Total (of product stage)	A1-3	0	0.059	0	0				

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.